為了更透徹理解真實世界的環境如何運作,她與研究夥伴一起花了好幾年時間探究表層水對壁虎黏附力的影響。 凡德瓦力原理 凡德瓦力原理2025 她一開始先測量大壁虎在三種玻璃樣本上的黏附力—乾燥、用水滴稍微沾濕,以及完全浸泡在水中。 其次,機器學習技術能夠辨識那些對於人類難以想像或無法感知的動物感官訊號,這些包括聲音、振動、光線、化學物質等。
斑海豹則依賴其特殊的鬍鬚來察覺魚游過的流體動力,猶如水中留下的軌跡。 角蟬使用震動通信,能夠透過植物表面傳遞信息給其他角蟬,即使對人類來說是聽不見的。 至於我們的忠實夥伴狗,它們的世界主要由氣味構成,能夠分辨地下埋藏的松露、潛藏的地雷、古蹟、毒品甚至主人身體內的腫瘤等各種氣味。 (1)『氫鍵』這個名詞中雖然含有『鍵』字,但它不是一種化學鍵結,而是一種較強的『分子間的作用力』,氫鍵雖然比一般的化學鍵(共價鍵、離子鍵、金屬鍵)弱,卻比凡得瓦力強。
凡德瓦力原理: 方程式的形式
也能夠幫助我們理解圈養動物的情感和需求,從而改進在人類照顧下的生活品質。 人與動物之間的溝通一直是科學界和哲學界十分引人關注的一個議題。 傳統觀點認為,人類和其他動物之間的溝通受到生物學和語言能力的限制,因此很難實現真正的互相理解。 凡德瓦力原理2025 然而,近年來,科學家們對這個問題的看法已經開始轉變,並且有一些跡象表明跨物種溝通有望成為現實。 他在 2011 年發表的一篇文章中,發現濕度提升得愈高,剛毛會變得愈軟,但是我們不知道在「整隻動物」規模時會怎麼運作。 還有許多細胞生物學家認為角蛋白毛髮有額外的功能—蛋白質表面自然產生的正電荷似乎會進一步增強凡得瓦效應。
最後, 2011 年,在一間黑暗的研究實驗室中,發現了一些神祕的壁虎腳印。 凡德瓦力原理2025 老實說,這個解釋無法說服我,而史塔克在電話中似乎也同意我的看法。 我們單純無法解釋我們的結果,或為何鐵弗龍與其他材料如此不同。 在之後的實驗中,我們擾亂它的粗糙度和氟化作用(一種表面加工),以檢視有無任何變化。
凡德瓦力原理: 方程的形式
③分子中電子的運動產生瞬時偶極矩,它使臨近分子瞬時極化,後者又反過來增強原來分子的瞬時偶極矩;這種相互耦合產生淨的吸引作用,這三種力的貢獻不同,通常第三種作用的貢獻最大。 直到 1877 年,凡得瓦的發現在廣泛流傳的德語雜誌《物理學年鑑》(Annalen der Physik)中被做了概述介紹後,物理界才完全明白此研究的創新本質,而激起一陣液體和氣體分子物理的研究熱潮。 例如,我們依然還沒全面釐清潮溼環境下的角蛋白剛毛發生什麼事。 人體的毛髮極容易受濕度影響,主要是因為水有助於α- 角蛋白的鄰近股之間形成暫時的氫鍵。 凡德瓦力原理 凡德瓦力原理2025 雖然它跟壁虎的β- 角蛋白之間有一些化學差異,但水似乎也有可能也會對其機械性特質產生作用。 但有越來越多科學家認為,隨著人工智慧(AI)的快速進步,破譯動物的溝通方式不再是不可能的事情。
在《費曼物理學講義》中,廣為人知的是,費曼一開始便問,人類最應該為子孫保存的是哪一則科學知識,而他的答案是:所有物質皆由原子所組成。 凡德瓦力原理 雖然這看起來顯而易見——事實上,原子的概念可追朔到古希臘時代——然而原子的存在直到 20 世紀一直都是科學家激烈爭辯的問題。 提供世界由分子組成的觀點強而有力、令人信服證據的是凡得瓦(Johannes Diderik van der Waals),他原是一位荷蘭的小學老師,物理知識大都自學而得,然而他努力不懈,終成了現代分子科學之父。 在石虎、黑熊跟水獺轉生變高中女生、IVE 凡德瓦力原理2025 開始對人類有興趣之前,機器學習的確可幫助我們監控和保護瀕臨絕種的野生物種,透過解讀其溝通方式,更了解牠們的需求和行為,制定更有效的保育策略。
凡德瓦力原理: 壁虎黏附系統的未解謎題
在史塔克的研究中,她著重在玻璃表面,這是因為玻璃具有親水性,會吸水。 凡德瓦力原理 當壁虎的足部接觸到潮溼的玻璃,牠無法完全把水推開,如史塔克的解釋,這會中斷提供壁虎大部分抓力的凡得瓦力。 分子間作用力只存在於分子(molecule)與分子之間或惰性氣體(noble gas)原子(atom)間的作用力,又稱范德華力(van der waals),具有加和性,屬於次級鍵。 Greany表示,匙突令壁虎與表面接觸的面積最大化,將牠們的體重分散開來,讓牠們和表面之間的吸引力呈指數性增長。 「完全確定的是,在我所有的研究中,我深信分子確實存在,從未將它們視為是我想像的虛構之物,」凡得瓦曾如此說,「但是當我開始研究時,我感覺只有我有這樣的看法。」。 體悟到可濕性是壁虎抓力的關鍵因子,促使許多研究團體開始探究壁虎碰到工程性疏水表面會發生什麼事—最有名的研究是壁虎與鐵弗龍的比賽,首次討論在 1960 年代晚期開始。
- 當壁虎的足部接觸到潮溼的玻璃,牠無法完全把水推開,如史塔克的解釋,這會中斷提供壁虎大部分抓力的凡得瓦力。
- 如下圖,正戊烷、異戊烷與新戊烷,這三個化合物的分子式相同,卻因分子排列方式與接觸面積不同,而導致倫敦分散力有差異。
- 分子量大的物質,分子中所含的電子數越多,其靜電吸引力越強,分子間的作用力就越大,其沸點就會越高,因此優先比較分子量。
- 其中,有一些引人入勝的作品,例如《瀕臨絕種團》,故事描述了被路殺後轉生成人類的石虎、黑熊和水獺,當上 YouTuber 還成為高中女生的故事。
- 它們會有效地排斥水,所以當蜥蜴把足部伸入水坑,會在足趾周圍形成微小的氣囊;水被推開,保持足趾乾燥。
凡得瓦力的發現始自1873年的一篇博士論文;這篇論文的作者,荷蘭物理學家凡得瓦當時已經36歲,大概是在科學史上佔有一席之地的科學家之中,最晚取得博士學位的人。 看牠如此迅速移動就知道不可能是腳底有黏膠;而牠在玻璃上也遊走自如,可見也不是靠倒鉤;難道是吸盤? 科學家後來用電子顯微鏡發現壁虎的腳底並無任何吸盤,卻有數十萬根的纖毛,而每根纖毛末端又有上百個分叉。 凡德瓦力原理 原來支撐壁虎體重的就是這數億根細毛與壁面之間的凡得瓦力。
凡德瓦力原理: 方程
由於子彈的弧線有不確定性,你恐怕必須射擊數千發子彈才能碰巧接個正著。 此外Greany還說,纖毛不只是有角度而已,而且還是捲的——這讓壁虎得以儲存大量的精力,並且非常迅速地改變角度。 凡德瓦力原理 凡德瓦力原理2025 1837 年 11 月 23 凡德瓦力原理2025 日:現代分子科學之父——自學成功的科學家凡得瓦(Johannes van der Waals)的誕生。
凡德瓦力原理: 方程式的提出
但是如果表面本身就具疏水性,那一切對壁虎來說就簡單多了。 在那樣的情況下,其足部和表面都會排斥水,因此兩者接觸時也會很乾燥。 那對壁虎而言是理想的狀況—沒有水,其剛毛和匙突都能用來黏附。 「實際而言,相較於走進暴雨之中並踩入深水坑,壁虎更有可能接觸到僅稍微沾濕的表面。」即使如此,史塔克在稍微沾濕的表面測得的力量,還是比足趾乾燥走過乾燥玻璃的壁虎還低(或比較不黏)。 「我們測量了四足完全泡在水中時的最低黏附力,這時候水絕對會干擾以凡得瓦力為基礎的黏附力所需的密切接觸。」但她承認,這個狀況在野外大概沒那麼普遍。
凡德瓦力原理: 分子间作用力色散力
這些作品在畫風和故事情節方面都各有特色,無論你是一位一般漫畫愛好者還是偏愛條漫,你都可以在 CCC 追漫台找到它們,享受不同的視覺和情感體驗。 因為分子本身雖是電中性,但電荷不會剛好均勻分布,往往兩端各為正負電,如此一來,就會像磁鐵那樣與另一個靠近的分子互相吸引。 凡得瓦力非常微弱,但是億萬個分子同時作用就產生極大的黏著力。 歷史已經證明普朗克的見解甚至比他所想的要深入得多。
凡德瓦力原理: 分子間作用力
這個平台由本土新銳圖文創作者們打造,並結合國家典藏資料素材,以探索臺灣的豐富歷史、民俗、社會和生態等多元議題。 回顧他的一生經歷,從小學老師、中學教師、大學教授,最後還得到諾貝爾物理獎,這種不斷努力向上的精神真是令人敬佩。 凡得瓦因為家境因素,小學畢業後只能上專門培養小學師資的學校,而自19歲起成為小學教師。 六年後,他想繼續進修,卻因為沒在一般中學學過希臘文與拉丁文而無法進入大學,只能前往旁聽。 他先靠自學,於28歲取得中學教師資格;幾年後,古典語文的入學規定終於廢除,他才得以進入萊頓大學就讀。
凡德瓦力原理: 分子間的作用力-凡得瓦力與氫鍵
這篇以荷蘭文寫的論文原本不會得到科學界的注意,幸好曾研究過這題目的馬克士威注意到這篇論文後驚為天人,大力推崇,默默無聞的凡得瓦才一夕成名,並於1876年成為大學教授,直到七十歲退休為止。 范氏方程对气-液临界温度以上流体性质的描写优于理想气体方程。 对温度稍低于临界温度的液体和低压气体也有较合理的描述。 凡德瓦力原理 氫鍵(hydrogen bond)、弱范德華力、鹽鍵、疏水作用力、芳環堆積作用、鹵鍵都屬於次級鍵(又稱分子間弱相互作用)。 經過一整晚的努力,他發現數據與公式完全符合,隔天一早便通知普朗克。
凡德瓦力原理: 方程的提出
機器可以幫助分析這些訊號,並幫助我們理解動物想要傳遞的訊息。 另一部作品是《海巫事務所》,它將魔法元素融入生物學,講述了一個迷茫的廢業青年與擬人化海洋動物相遇並相互療癒的故事。 還有一個短篇漫畫《IVE》,通過科幻的方式,描述了某種深海雌鮟鱇的繁殖和誘導機制,卻將目標對象設定為人類男性的謎般生物,及她和科學家之間的異色關係。
凡德瓦力原理: 凡得瓦力
首先,機器不具備人類的偏見,因此能幫助研究者更理解動物溝通系統的結構和功能,同時辨識我們和動物之間的差異。 在當代台灣的漫畫作品中,許多優秀的新一代漫畫家探討了擬人化動物和人類之間的隔閡、衝突以及理解,呈現了多元化的故事情節。 凡德瓦力原理2025 其中,有一些引人入勝的作品,例如《瀕臨絕種團》,故事描述了被路殺後轉生成人類的石虎、黑熊和水獺,當上 凡德瓦力原理 YouTuber 還成為高中女生的故事。 這個作品提供了獨特的視角,探討了不同物種之間的互動和冒險。
分子量相近的物質,具有極性者,由於其分子與分子之間有“偶極-偶極力”,分子間的作用力越大,則沸點越高。 壁虎黏附力的主要機制來自凡得瓦力,這似乎毫無疑問,但是我與研究人員對談,加上讀了多於我想承認的期刊論文後,我愈來愈認為不只如此。 儘管我們不斷又相當密集地進行研究,我們可能還未揭露壁虎黏附系統的所有秘密。 例如,海龜和許多鳥類能感知地球的磁場,藉此進行長距離遷徙;而響尾蛇具有紅外線感覺器官,能夠在黑暗中感知幾公尺外的獵物體溫。 凡德瓦力原理2025 蝙蝠則使用回音定位來捕捉飛蛾等獵物,每秒發射兩百次超音波脈衝,並根據百萬分之一秒的時間差距來精準定位目標。
普朗克做出了某些假設,找出振子的平均能量與熵之間的關係,從而得出一個計算輻射強度的公式,他希望這個公式能符合實驗結果。 Autumn的團隊在2002年證實了壁虎會運用凡得瓦力,他也說這次的新發現就該理論與壁虎所使用的黏著方式而言,是一大進展。 原子中的電子產生一個磁場並刺激及吸引另一個鄰近原子中的電子時,就會出現這種現象。 現在,一份發表於8月12日《應用物理學期刊》(Journal of Applied 凡德瓦力原理 Physics)的新研究論文揭露了壁虎控制黏著度的部分複雜機制。
凡德瓦力原理: 分子间作用力氢键
悲劇於 1881 年降臨他家,那年他太太安娜突然因肺結核病死,時年僅 34 歲,讓他極度心碎,爾後有十幾年沒有發表論文。 他從未再婚,和 4 個小孩過著安靜的生活,女兒安妮持家,賈克琳是有名的詩人,約翰娜是老師,兒子約翰跟隨父親的腳步是當上物理教授。 他有一位學生說:「名譽既未改變他的行為,也沒有改變他的習慣。」。 凡得瓦隨後的成就包括對應狀態定律,此理論被視為氫和氦液化,以及接著於 1911 年發現超導性的基礎,還有早期的毛細管理論,以及二元混合物理論,其對於化學工程以及地球化學有著持續性的影響。 凡得瓦也預見團簇化學和物理學的重要性,此領域的研究在最近數十年才漸熱門起來。